By Topic

Search-based Job Scheduling for Parallel Computer Workloads

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Vasupongayya, S. ; Dept. of Comput. Sci., Portland State Univ. ; Su-Hui Chiang ; Massey, B.

To balance performance goals and allow administrators to declaratively specify high-level performance goals, we apply complete search algorithms to design on-line job scheduling policies for workloads that run on parallel computer systems. We formulate a hierarchical two-level objective that contains two goals commonly placed on parallel computer systems: (1) minimizing the total excessive wait; (2) minimizing the average slowdown. Ten monthly workloads that ran on a Linux cluster (IA-64) from NCSA are used in our simulation of policies. A wide range of measures are used for performance evaluation, including the average slowdown, average wait, maximum wait, and new measures based on excessive wait. For the workloads studied, our results show that the best search-based scheduling policy (i.e., DDS/lxf/dynB) reported here simultaneously beats both FCFS-backfill and LXF-backfill, each roughly providing a lower bound on maximum wait and the average slowdown, respectively, among backfill policies

Published in:

Cluster Computing, 2005. IEEE International

Date of Conference:

Sept. 2005