Cart (Loading....) | Create Account
Close category search window

1K-5 Information Theoretic Ultrasound Imaging Differentiates Dystrophin-Deficient and Normal Skeletal Muscle in Humans

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Hughes, M.S. ; Sch. of Medicine, Washington Univ., St. Louis, MO ; Marsh, J.N. ; Brown, P.A. ; Wallace, K.D.
more authors

The dystrophinopathies are a group of X-linked genetic diseases that result from dystrophin deficiency. Duchenne's muscular dystrophy (DMD) is the most severe dystrophinopathy, with an incidence of 1:3500 male births. Current techniques, such as strength testing, for monitoring progress of disease and therapy in DMD patients, are imprecise and physically demanding. However, ultrasound is well-suited to detect changes in structure and organization in muscle tissue in a manner that makes low demands on the patient. Therefore, we investigated the use of ultrasound to quantitatively phenotype patients with DMD. Beam-formed RF data were acquired from the skeletal muscles of nine DMD and five normal subjects using a clinical imaging system (HDI5000 w/ 7 MHz probe applied above left biceps muscle). From these data, images were reconstructed using B-mode (log of analytic signal magnitude) and information-theoretic receivers (Hf-receiver). Hf images obtained from dystrophic muscle contained extensive "mottled" regions (i.e. areas with heterogeneous image contrast) that were not readily apparent from the B-mode images. The two dimensional autocorrelation of DMD Hf images have broader peaks than those of normal subjects, which is indicative of larger scatterer sizes, consistent with pathological changes of fibers, edema, and fatty infiltration. Comparison of the relative peak widths (full width measured at 60% maximum) of the autocorrelation of the DMD and normal H f images shows a quantitative difference between the two groups (p < 0.005, student two-tailed unpaired t-test). Consequently, these imaging techniques may prove useful for longitudinal monitoring of disease progression and therapy

Published in:

Ultrasonics Symposium, 2006. IEEE

Date of Conference:

2-6 Oct. 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.