By Topic

3A-2 Cylindrical Ultrasonic Array for Borehole Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

A cylindrical ultrasonic array has been developed for operating environments that can reach extremes of 175 C and 20,000 psi. The array is a key component of the PharUSIT (Phased Array Ultrasonic Transducer for Inspection of Tubing), a research demonstrator developed for borehole applications. The full array consists of 800 elements (10 rings of 80 elements each) and can provide a whole range of beam-forming versatilities and capabilities in 3D, such as variable focusing, beam steering, electronic scanning, etc, all accomplished without mechanical movements. Special piezocomposites have been developed for the transduction layer, and new polymeric composites have been formulated for the backing material. The center frequency was chosen to be about 500 kHz to accommodate attenuation of the propagation media. A novel technique utilizing custom flexible circuit provides electrical connections between the array and the front-end electronics. Special fabrication processes have been developed to construct the array in a cylindrical geometry. A customized testing protocol has been implemented to demonstrate the survivability of the array technology and to evaluate the performance characteristics of individual elements under high-temperature/high-pressure conditions. Data from electroacoustic measurements such as electrical impedance, bandwidth, sensitivity, angular directivity, and inter-element cross-talks will be shown

Published in:

2006 IEEE Ultrasonics Symposium

Date of Conference:

2-6 Oct. 2006