Cart (Loading....) | Create Account
Close category search window

On Design and Analysis of a Feasible Network-on-Chip (NoC) Architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jun Ho Bahn ; Dept. of Electr. Eng. & Comput. Sci., California Univ., Irvine, CA ; Seung Eun Lee ; Bagherzadeh, N.

In this paper, we present several enhanced network techniques which are appropriate for VLSI implementation and have reduced complexity, high throughput, and simple routing algorithm even if basic network problems such as deadlock and livelock, are considered. We develop a new packet definition to support different requirements in an MIMD message passing architecture and also verify its efficiency by comparing simulation results with various routing algorithms. Major contributions of this paper are the design of network-on-chip (NoC) architecture adopting a minimal adaptive routing algorithm with competitive performance and feasible design complexity, thus satisfying all the stated design goals. The proposed adaptive routing algorithm and NoC architecture offer nearly optimal performance. This can be shown by comparing with the near-optimal worst-case throughput routing algorithm for 2D-mesh networks. By providing a uniform way of constructing such network architecture, its scalability can be easily accomplished. Moreover, this network architecture can be applied to different SoC developments

Published in:

Information Technology, 2007. ITNG '07. Fourth International Conference on

Date of Conference:

2-4 April 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.