By Topic

Efficient Spam Email Filtering using Adaptive Ontology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Seongwook Youn ; Dept. of Comput. Sci., Southern California Univ., Los Angeles, CA ; McLeod, D.

Email has become one of the fastest and most economical forms of communication. However, the increase of email users has resulted in the dramatic increase of spam emails. As spammers always try to find a way to evade existing filters, new filters need to be developed to catch spam. Ontologies allow for machine-understandable semantics of data. It is important to share information with each other for more effective spam filtering. Thus, it is necessary to build ontology and a framework for efficient email filtering. Using ontology that is specially designed to filter spam, bunch of unsolicited bulk email could be filtered out on the system. This paper proposes to find an efficient spam email filtering method using adaptive ontology

Published in:

Information Technology, 2007. ITNG '07. Fourth International Conference on

Date of Conference:

2-4 April 2007