Cart (Loading....) | Create Account
Close category search window
 

WLC16-4: Low-Complexity Turbo Equalization for Alamouti Space-Time Block Coded EDGE Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wavegedara, K.C.B. ; Dept. of Electr. & Comput. Eng., Univ. of British Columbia, Vancouver, BC ; Bhargava, V.K.

Enhanced Data Rates for Global Evolution (EDGE) based systems are expected to facilitate the same services as third generation WCDMA systems. This goal is achieved through physical layer enhancements to increase the data rate and spectral efficiency. Thus, it has become important to incorporate the recent advances in the physical layer. Recently, space-time block coding (STBC) has evolved as an effective transmit diversity technique. Convolutional channel coding is employed in EDGE systems. The combination of channel coding and STBC can be used to achieve high throughput over hostile wireless channels. On the other hand, turbo equalization can be employed in channel coded broadband wireless systems to further enhance the radio link performance. EDGE-based systems employ 8PSK high- level modulation. Hence, maximum a posteriori (MAP)-based soft equalization is not suitable due to high complexity. Therefore, in this paper, we propose a low-complexity MMSE-based turbo equalization scheme for Alamouti space-time (ST) block coded multiple-input multiple-output (MIMO) systems. In the proposed iterative receiver, widely linear (WL) processing is used to exploit the rotational variance of the ST block coded transmit signal. Equalization and ST block decoding are jointly carried out at each iteration using the a priori information delivered by the convolutional channel decoder from the previous iteration. The simulation results demonstrate that high performance improvement can be obtained using the proposed iterative scheme in comparison to the non-iterative equalization. Due to the low-complexity, the proposed scheme is highly attractive for future EDGE-based systems with Alamouti STBC.

Published in:

Global Telecommunications Conference, 2006. GLOBECOM '06. IEEE

Date of Conference:

Nov. 27 2006-Dec. 1 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.