Cart (Loading....) | Create Account
Close category search window

CTH06-6: Optimized Transmission for Upstream Vectored DSL Systems Using Zero-Forcing Generalized Decision-Feedback Equalizers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chiang-Yu Chen ; Dept. of Electr. Eng., Stanford Univ., Stanford, CA ; Kibeom Seong ; Rui Zhang ; Cioffi, J.M.

In upstream vectored DSL transmission, the far-end crosstalk (FEXT) can be completely cancelled by using zero- forcing generalized decision-feedback equalizers (ZF-GDFE). When the spatially correlated alien crosstalk is present, the achievable data rates of DSL lines with ZF-GDFE depend on their decoding orders at each DMT tone. Given a weighted sum-rate maximization problem, the optimal orderings for all DMT tones can be found by the Lagrange dual decomposition method. However, the computational complexity of such approach grows with the factorial of the number of users, which makes the optimal search infeasible with a large number of vectored lines. This paper presents a modified greedy algorithm (MGA) that performs close to the optimal search of decoding orders. The complexity of MGA is only proportional to the cube of the number of users, which is the same as it of QR decomposition. With a significant reduction of complexity, MGA is a promising technique for practical DSL systems.

Published in:

Global Telecommunications Conference, 2006. GLOBECOM '06. IEEE

Date of Conference:

Nov. 27 2006-Dec. 1 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.