By Topic

Dielectric permittivity simulations of layered composites with rough interfacial surfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Calame, J.P. ; Naval Res. Lab., Washington, DC ; Garven, M.

Finite difference quasi-electrostatic simulations are used to predict the interfacial dielectric permittivity of a rough-surfaced contact zone between two distinct materials in a layered composite. Fractional Brownian surfaces, which have fractal geometry, are used to represent the rough interfaces in a model space. The interfacial simulations are combined with a macroscopic analytic model for planar dielectric layers, which allows the calculation of composite permittivity for a layered composite with an arbitrary ratio of surface roughness-to-layer thickness and arbitrary volumetric filling fractions of the constituents. Examples are given for a ceramic-polymer system, and the effects of alternate ratios of constituent dielectric permittivities and changes in surface fractal character are also explored. Compared to the behavior of composites with perfectly flat interfaces, the rough-surfaced composite exhibits a significantly earlier increase in permittivity as a function of the volumetric filling fraction of the higher permittivity material. The behavior with extremely rough surfaces tends towards the predictions of the effective medium approximation

Published in:

Dielectrics and Electrical Insulation, IEEE Transactions on  (Volume:14 ,  Issue: 2 )