Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Document binarisation using Kohonen SOM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Badekas, E. ; Dept. of Electr. & Comput. Eng., Democritus Univ. of Thrace, Xanthi ; Papamarkos, N.

An integrated system for the binarisation of normal and degraded printed documents for the purpose of visualisation and recognition of text characters is proposed. In degraded documents, where considerable background noise or variation in contrast and illumination exists, there are many pixels that cannot be easily classified as foreground or background pixels. For this reason, it is necessary to perform document binarisation by combining and taking into account the results of a set of binarisation techniques, especially for document pixels that have high vagueness. The proposed binarisation technique takes advantages of the benefits of a set of selected binarisation algorithms by combining their results using a Kohonen self-organising map neural network. In order to improve further the binarisation results, significant improvements are proposed for two of the most powerful document binarisation techniques used, that is for the adaptive logical level technique and for the improvement of integrated function algorithm. The proposed binarisation technique is extensively tested with a variety of degraded documents. Several experimental and comparative results, demonstrating the performance of the proposed technique, are presented

Published in:

Image Processing, IET  (Volume:1 ,  Issue: 1 )