Cart (Loading....) | Create Account
Close category search window
 

Design and Analysis of Super-Wide Bandpass Filters Using a Novel Compact Meta-Structure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xian Qi Lin ; Dept. of Radio Eng., Southeast Univ., Nanjing ; Hui Feng Ma ; Bao, Di ; Cui, Tie Jun

This paper presents a novel compact meta-structure, which is characterized by left-handed properties. In the novel structure, two linear arrays of metallic vias and short-stub inductors are used to generate shunt inductors besides the series interdigital capacitors. Compared with conventional composite right/left-handed transmission-line structures, the new structure has weaker coupling to other components and is easily controlled by adjusting the shunt inductance and series capacitance to produce different left-handed properties. Due to the isolation of two via arrays, the proposed structure can also be transplanted directly from the microstrip system to the coplanar-waveguide system. We have proposed an efficient procedure to retrieve the equivalent propagating modes for both forward and backward waves based on the matrix pencil method, which provides an easy way to study the propagation characteristics. Using such a meta-structure, a series of super-wide bandpass filters are designed and fabricated at different frequency bands. Good agreements between simulation and experiment results have been achieved, and good performance in passbands and stopbands has been observed with a relative 3-dB bandwidth larger than 70%. For easy design of such super-wide bandpass filters, an experienced formula is given between the physical size and the center frequency of the 3-dB passband, which can be used to redesign any filters at other frequency bands

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:55 ,  Issue: 4 )

Date of Publication:

April 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.