Cart (Loading....) | Create Account
Close category search window
 

An Alternative Algorithm for Both Narrowband and Wideband Lorentzian Dispersive Materials Modeling in the Finite-Difference Time-Domain Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Aksoy, S. ; Electron. Eng. Dept., Gebze Inst. of Technol., Kocaeli

In this study, an alternative algorithm is proposed for modeling narrowband and wideband Lorentzian dispersive materials using the finite-difference time-domain (FDTD) method. Previous algorithms for modeling narrowband and wideband Lorentzian dispersive materials using the FDTD method have been based on a recursive convolution technique. They present two different and independent algorithms for the modeling of the narrowband and wideband Lorentzian dispersive materials, known as the narrowband and wideband Lorentzian recursive convolution algorithms, respectively. The proposed alternative algorithm may be used as a general algorithm for both narrowband and wideband Lorentzian dispersive materials modeling with the FDTD method. The second-order motion equation for the Lorentzian materials is employed as an auxilary differential equation. The proposed auxiliary differential-equation-based algorithm can also be applied to solve the borderline case dispersive electromagnetic problems in the FDTD method. In contrast, the narrowband and wideband Lorentzian recursive convolution algorithms cannot be used for the borderline case. A rectangular cavity, which is partially filled with narrowband and wideband Lorentzian dispersive materials, is presented as a numerical example. The time response of the electric field z component is used to validate and compare the results

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:55 ,  Issue: 4 )

Date of Publication:

April 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.