Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Maximizing the Transmission Performance of Adaptively Modulated Optical OFDM Signals in Multimode-Fiber Links by Optimizing Analog-to-Digital Converters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tang, J.M. ; Sch. of Informatics, Univ. of Wales, Bangor ; Shore, K.A.

Based on a comprehensive theoretical model of a recently proposed novel technique known as adaptively modulated optical orthogonal frequency-division multiplexing (AMOOFDM), investigations are undertaken into the impact of an analog-to-digital converter involved in the AMOOFDM modem on the transmission performance of AMOOFDM signals in unamplified intensity-modulation and direct-detection (IMDD) multimode-fiber (MMF)-based links. It is found that signal quantization and clipping effects are significant in determining the maximum achievable transmission performance of the AMOOFDM modem. A minimum quantization bit value of ten and optimum clipping ratio of 13 dB are identified, based on which, the transmission performance is maximized. It is shown that 40-Gb/s-over-220-m and 32-Gb/s-over-300-m IMDD-AMOOFDM signal transmission at 1550 nm with loss margins of about 15 dB is feasible in the installed worst case 62.5-mum MMF links having 3-dB effective bandwidths as small as 150 MHz middot km. Meanwhile, excellent performance, robustness to fiber types, and variation in launch conditions and signal bit rates is observed. In addition, discussions are presented of the potential of 100-Gb/s AMOOFDM signal transmission over installed MMF links

Published in:

Lightwave Technology, Journal of  (Volume:25 ,  Issue: 3 )