Cart (Loading....) | Create Account
Close category search window
 

Performance Evaluation of Tunable Channel-Selective Wavelength Shift by Cascaded Sum- and Difference-Frequency Generation in Periodically Poled Lithium Niobate Waveguides

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Shiming Gao ; Dept. of Precision Instruments, Tsinghua Univ., Beijing ; Changxi Yang ; Xiaosheng Xiao ; Yu Tian
more authors

We theoretically evaluate the performance of tunable channel-selective wavelength shift based on cascaded sum- and difference-frequency generation by the use of two pump lights in periodically poled lithium niobate waveguides. In double-pass configurations, the functions of wavelength add/drop and wavelength shift are easy to integrate in the same waveguide. Analysis shows that a longer waveguide more competently adapts narrower channel spacing in wavelength-division-multiplexed (WDM) systems. This wavelength shifter is flexible due to the almost separable operations of the two pumps: The channel is selected by setting the first pump, and the wavelength-shifting value is tuned by adjusting the second pump. This wavelength shifter has a very large dynamic region. For a 2.56-cm-long waveguide, the maximum dynamic region is as broad as 67 nm in a 0.4-nm channel-spacing WDM system. The dynamic region is mainly dominated by the limitation of multiple-channel crosstalk in a dense WDM system. However, it is dominated by the limitation of single-channel efficiency fluctuation in a coarse one

Published in:

Lightwave Technology, Journal of  (Volume:25 ,  Issue: 3 )

Date of Publication:

March 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.