Cart (Loading....) | Create Account
Close category search window

A Memory-Level Parallelism Aware Fetch Policy for SMT Processors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Eyerman, S. ; Dept. of ELIS, Ghent Univ. ; Ecckhout, L.

A thread executing on a simultaneous multithreading (SMT) processor that experiences a long-latency load will eventually stall while holding execution resources. Existing long-latency load aware SMT fetch policies limit the amount of resources allocated by a staffed thread by identifying long-latency loads and preventing the given thread from fetching more instructions - and in some implementations, instructions beyond the long-latency load may even be flushed which frees allocated resources. This paper proposes an SMT fetch policy that hikes into account the available memory-level parallelism (MLP) in a thread. The key idea proposed in this paper is that in case of an isolated long-latency had. i.e. there is no MLP the thread should be prevented from allocating additional resources. However, in case multiple independent long-latency loads overlap, i.e., there is MLP the thread should allocate as many resources as needed in order to fully expose the available MLP. The proposed MLP-aware fetch policy achieves better performance for MLP-intensive threads on an SMT processor and achieves a better overall balance between performance and fairness than previously proposed fetch policies

Published in:

High Performance Computer Architecture, 2007. HPCA 2007. IEEE 13th International Symposium on

Date of Conference:

10-14 Feb. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.