By Topic

Electromigration effect on strain and mechanical property change in lead-free solder joints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Luhua Xu ; Sch. of Mech. & Aerosp. Eng., Nanyang Technol. Univ., Singapore ; Pang, J.H.L. ; Ren, Fei ; Xi Zhang
more authors

The effect of electromigration on the strain and mechanical properties change in SAC solder joint is reported. In-situ digital image speckle correlation technology was used to study the strain evolution at the lead-free solder joints during electromigration. The tensile test structure of a solder ball connected by two Cu wires of 300mum diameters was prepared and tested. It is found that, during electromigration, with the atoms moving from the cathode to the anode, a tensile strain was created at the cathode region; while a compressive strain was observed at the anode region. And the strain difference between the cathode and anode kept increasing with the time of electromigration. The mechanical property of Pb-free solder joints with and without electromigration is studied by the nano-indentation continuous stiffness measurement (CSM) technology. At 100 degC, the applied current density was from 0 A/cm2 to 5 times 103 A/cm2 and the time from 3 to 144 hrs. An array of 500 nm indentations was created by the nanoindenter from the cathode area, across the bulk of the solder, to the anode area. The change of Young's modulus and the hardness at the cathode and the anode was calculated from the CSM nano-indentation test. The results show that, the Young's modulus and the hardness of the anode were higher than the original values. It increases with increasing electromigration time or higher current density. On the other hand, the Young's modulus and hardness at the cathode were lower than the original values and they decrease with increasing electromigration time or higher current density. Therefore, there is a change of mechanical properties at the cathode and the anode region of the lead-free SAC solder joints due to electromigration.

Published in:

Electronics Packaging Technology Conference, 2006. EPTC '06. 8th

Date of Conference:

6-8 Dec. 2006