By Topic

Spectral extrapolation of spatially bounded images [MRI application]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. K. Plevritis ; Dept. of Electr. Eng., Stanford Univ., CA, USA ; A. Macovski

A spectral extrapolation algorithm for spatially bounded images is presented. An image is said to be spatially bounded when it is confined to a closed region and is surrounded by a background of zeros. With prior knowledge of the spatial domain zeros, the extrapolation algorithm extends the image's spectrum beyond a known interval of low-frequency components. The result, which is referred to as the finite support solution, has space variant resolution; features near the edge of the support region are better resolved than those in the center. The resolution of the finite support solution is discussed as a function of the number of known spatial zeros and known spectral components. A regularized version of the finite support solution is included for handling the case where the known spectral components are noisy. For both the noiseless and noisy cases, the resolution of the finite support solution is measured in terms of its impulse response characteristics, and compared to the resolution of the zerofilled and Nyquist solutions. The finite support solution is superior to the zerofilled solution for both the noisy and noiseless data cases. When compared to the Nyquist solution, the finite support solution may be preferred in the noisy data case. Examples using medical image data are provided

Published in:

IEEE Transactions on Medical Imaging  (Volume:14 ,  Issue: 3 )