By Topic

Code Generation and Optimization for Transactional Memory Constructs in an Unmanaged Language

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Cheng Wang ; Programming Syst. Lab., Intel Corp., Santa Clara, CA ; Wei-Yu Chen ; Youfeng Wu ; Saha, B.
more authors

Transactional memory offers significant advantages for concurrency control compared to locks. This paper presents the design and implementation of transactional memory constructs in an unmanaged language. Unmanaged languages pose a unique set of challenges to transactional memory constructs - for example, lack of type and memory safety, use of function pointers, aliasing of local variables, and others. This paper describes novel compiler and runtime mechanisms that address these challenges and optimize the performance of transactions in an unmanaged environment. We have implemented these mechanisms in a production-quality C compiler and a high-performance software transactional memory runtime. We measure the effectiveness of these optimizations and compare the performance of lock-based versus transaction-based programming on a set of concurrent data structures and the SPLASH-2 benchmark suite. On a 16 processor SMP system, the transaction-based version of the SPLASH-2 benchmarks scales much better than the coarse-grain locking version and performs comparably to the fine-grain locking version. Compiler optimizations significantly reduce the overheads of transactional memory so that, on a single thread, the transaction-based version incurs only about 6.4% overhead compared to the lock-based version for the SPLASH-2 benchmark suite. Thus, our system is the first to demonstrate that transactions integrate well with an unmanaged language, and can perform as well as fine-grain locking while providing the programming ease of coarse-grain locking even on an unmanaged environment

Published in:

Code Generation and Optimization, 2007. CGO '07. International Symposium on

Date of Conference:

11-14 March 2007