By Topic

Physically Unclonable Function-Based Security and Privacy in RFID Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bolotnyy, L. ; Dept. of Comput. Sci., Virginia Univ., Charlottesville, VA ; Robins, G.

Radio frequency identification (RFID) is an increasingly popular technology that uses radio signals for object identification. Tracking and authentication in RFID tags have raised many privacy and security concerns. On the other hand, known privacy and security cryptographic defenses are too hardware-expensive to incorporate into low-cost RFID tags. In this paper, we propose hardware-based approaches to RFID security that rely on physically unclonable functions (PUFs). These functions exploit the inherent variability of wire delays and parasitic gate delays in manufactured circuits, and may be implemented with an order-of-magnitude reduction in gate count as compared with traditional cryptographic functions. We describe protocols for privacy-preserving tag identification and secure message authentication codes. We compare PUFs to digital cryptographic functions, address other uses of PUFs to enhance RFID security and suggest interesting directions for future research. The proposed solutions are efficient, practical, and appropriate for low-cost RFID systems

Published in:

Pervasive Computing and Communications, 2007. PerCom '07. Fifth Annual IEEE International Conference on

Date of Conference:

19-23 March 2007