Cart (Loading....) | Create Account
Close category search window
 

High-Performance Optical 3R Regeneration for Scalable Fiber Transmission System Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Zuqing Zhu ; Dept. of Electr. & Comput. Eng., California Univ., Davis, CA ; Funabashi, M. ; Zhong Pan ; Paraschis, L.
more authors

This paper proposes and demonstrates optical 3R regeneration techniques for high-performance and scalable 10-Gb/s transmission systems. The 3R structures rely on monolithically integrated all-active semiconductor optical amplifier-based Mach-Zehnder interferometers (SOA-MZIs) for signal reshaping and optical narrowband filtering using a Fabry-Peacuterot filter (FPF) for all-optical clock recovery. The experimental results indicate very stable operation and superior cascadability of the proposed optical 3R structure, allowing error-free and low-penalty 10-Gb/s [pseudorandom bit sequence (PRBS) 223-1 ] return-to-zero (RZ) transmission through a record distance of 1 250 000 km using 10 000 optical 3R stages. Clock-enhancement techniques using a SOA-MZI are then proposed to accommodate the clock performance degradations that arise from dispersion uncompensated transmission. Leveraging such clock-enhancement techniques, we experimentally demonstrate error-free 125 000-km RZ dispersion uncompensated transmission at 10 Gb/s (PRBS 223-1) using 1000 stages of optical 3R regenerators spaced by 125-km large-effective-area fiber spans. To evaluate the proposed optical 3R structures in a relatively realistic environment and to investigate the tradeoff between the cascadability and the spacing of the optical 3R, a fiber recirculation loop is set up with 264- and 462-km deployed fiber. The field-trial experiment achieves error-free 10-Gb/s RZ transmission using PRBS 223-1 through 264 000-km deployed fiber across 1000 stages of optical 3R regenerators spaced by 264-km spans

Published in:

Lightwave Technology, Journal of  (Volume:25 ,  Issue: 2 )

Date of Publication:

Feb. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.