By Topic

Overload-Driven Mobility-Aware Cache Management in Wireless Environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Topcu-Altintas, H. ; Sch. of Inf. & Comput. Sci., California Univ., Irvine, CA ; Huang, Y. ; Venkatasubramanian, N.

In this paper, we propose a novel cache management strategy that uses the notion of "overload" where overload is defined as a situation when there is insufficient proxy cache for a new incoming user in a mobile region. In an overloaded situation, there will be increased network traffic (since the original server will need to be contacted) and increased service delays for mobile hosts (due to cache misses). The proposed techniques attempt to decrease the penalty of overloaded traffic and to reduce the number of remote accesses by increasing cache hit ratio. Our cache replacement algorithm is holistic in that it considers (i) mobility of the clients, (ii) predicted overloads, (iii) sizes of cached objects and (iv) their access frequencies in determining which object's cache (how much cache space) to be replaced, and when to replace. Performance results show that our overload-driven cache management strategy outperforms the existing popular policies

Published in:

Mobile and Ubiquitous Systems: Networking & Services, 2006 Third Annual International Conference on

Date of Conference:

July 2006