Cart (Loading....) | Create Account
Close category search window
 

An Adaptive IDS Model Based on Swarm Intelligence and Support Vector Machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Srinoy, S. ; Fac. of Sci. & Technol., Suan Dusit Rajabhat Univ., Bangkok

Intrusion detection system looks for unusual or suspicious activity, such as patterns of network traffics that are likely indicators of unauthorized activity. New intrusion types, of which detection systems are unaware, are the most difficult to detect. The amount of available network audit data instances is usually large, human labeling is tedious, time-consuming, and expensive. In this paper we present support vector machine approach to data clustering. Support vector machine is used to initially create raw clusters and then these clusters are refined using artificial fuzzy ants clustering (AFAC). AFAC that has been developed as swarm intelligence techniques. The Algorithm uses ant colony optimization principle to find good partitions of the data. Certain unnecessary complications of the original algorithm are discussed and means of overcoming these complexities are proposed. We propose artificial fuzzy ants clustering (AFAC) in the second stage for refinement mean of overcoming these complexities are proposed. Our approach allows us to recognize not only known attacks but also to detect suspicious activity that may be the result of a new, unknown attack. The experimental results on knowledge discovery and data mining-(KDDCup 1999)

Published in:

Communications and Information Technologies, 2006. ISCIT '06. International Symposium on

Date of Conference:

Oct. 18 2006-Sept. 20 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.