By Topic

Weighted Fourier Series Representation and Its Application to Quantifying the Amount of Gray Matter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chung, M.K. ; Dept. of Stat., Biostat., & Med. Informatics, Wisconsin Univ., Madison, WI ; Dalton, K.M. ; Li Shen ; Evans, A.C.
more authors

We present a novel weighted Fourier series (WFS) representation for cortical surfaces. The WFS representation is a data smoothing technique that provides the explicit smooth functional estimation of unknown cortical boundary as a linear combination of basis functions. The basic properties of the representation are investigated in connection with a self-adjoint partial differential equation and the traditional spherical harmonic (SPHARM) representation. To reduce steep computational requirements, a new iterative residual fitting (IRF) algorithm is developed. Its computational and numerical implementation issues are discussed in detail. The computer codes are also available at http://www.stat.wisc.edu/ ~mchung/softwares/weighted-SPHARM/weighted-SPHARM.html . As an illustration, the WFS is applied in quantifying the amount of gray matter in a group of high functioning autistic subjects. Within the WFS framework, cortical thickness and gray matter density are computed and compared

Published in:

Medical Imaging, IEEE Transactions on  (Volume:26 ,  Issue: 4 )