Cart (Loading....) | Create Account
Close category search window
 

Transmission Line Boundary Protection Using Wavelet Transform and Neural Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nan Zhang ; Dept. of Electr. & Comput. Eng, Texas A&M Univ., College Station, TX ; Kezunovic, M.

Two of the most expected objectives of transmission line protection are: 1) differentiating precisely the internal faults from external and 2) indicating exactly the fault type using one end data only. This paper proposes an improved solution based on wavelet transform and self-organized neural network. The measured voltage and current signals are preprocessed first and then decomposed using wavelet multiresolution analysis to obtain the high frequency details and low frequency approximations. The patterns formed based on high frequency signal components are arranged as inputs of neural network #1, whose task is to indicate whether the fault is internal or external. The patterns formed using low frequency approximations are arranged as inputs of neural network #2, whose task is to indicate the exact fault type. The new method uses both low and high frequency information of the fault signal to achieve an advanced line protection scheme. The proposed approach is verified using frequency-dependent transmission line model and the test results prove its enhanced performance. A discussion of the application issues for the proposed approach is provided at the end where the generality of the proposed approach and guidance for future study are pointed out

Published in:

Power Delivery, IEEE Transactions on  (Volume:22 ,  Issue: 2 )

Date of Publication:

April 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.