Cart (Loading....) | Create Account
Close category search window
 

Effective Communication Strategies for Noise-Limited Power-Line Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Meng, J. ; New Brunswick Univ., Fredericton, NB ; Marble, A.E.

Ergodic chaotic parameter modulation (ECPM) has recently been proposed as a viable modulation technique for power-line communications (PLC) due to its robustness to multipath conditions and low complexity in receiver design. While performance of ECPM has been found to be satisfactory in limited noise conditions, performance issues for other hostile challenges in the power-line environment, such as narrowband and impulsive noise, have not been extensively studied for this technique. Numerous studies have been performed on direct-sequence spread-spectrum (DSSS) modulation used in a wireless channel. The technique has been found to be well suited for a mobile environment due to its resistance to multipath fading and inherent narrowband interference suppression capability. For this study, PLC performance is investigated for both the DSSS and ECPM receiver for PLC. A signal-to-noise ratio (SNR) analysis is presented which investigates the noise-limiting properties of the power-line channel. This work provides a detailed insight to communication system performance in a power-line environment that includes the presence of significant narrowband and impulsive noise. It is concluded that while DSSS significantly outperforms ECPM in terms of bit-error rate for a Gaussian white noise-limited channel, the performance of the two techniques is similar for low SNR communication dominated by narrowband or impulsive noise. While the implementation of DSSS is more complex, ECPM is found to be less robust to low-frequency interference

Published in:

Power Delivery, IEEE Transactions on  (Volume:22 ,  Issue: 2 )

Date of Publication:

April 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.