By Topic

Dexterous Manipulation in Constrained Bilateral Teleoperation Using Controlled Supporting Point

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Matsumoto, Y. ; Dept. of Syst. Design Eng., Keio Univ., Yokohama ; Katsura, S. ; Ohnishi, K.

The use of robotic devices in surgical applications has been growing in recent years. Surgical robots are beginning to find applications in minimally invasive surgeries. The control issues pertaining to many of the applications of robotics to surgery are similar. In all cases, the ability to accommodate unique special-purpose mechanical designs is important, as is the ability to restrict the motions of the end-effector. Conventionally, motion constraint is attained by mechanical constraint equipments, such as bearing, linear guide, and so on. In this paper, robot motion control with a controlled supporting point (CSP) for operator aid is proposed. The method is to make the constraint without setting mechanical constraints. The merits of the proposed method are not only the simplification of mechanical equipments but also the deletion of friction at the constraint. It is easy to set the CSP at the position where the setting of mechanical supporting points is difficult. Furthermore, it is also possible to change the CSP online. This method is especially effective for the object whose position of surface is always changing. The proposed method is applied to six-degrees-of-freedom manipulators. The numerical and experimental results show the viability of the proposed method

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:54 ,  Issue: 2 )