By Topic

A Hybrid Micromachined High -Q Cavity Resonator at 5.8 GHz

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Christophe A. Tavernier ; Dept. of Electrical and Computer Engineering, The University of Arizona, Tucson, AZ 85721 ; Rashaunda Henderson ; John Papapolymerou

A novel hybrid micromachined resonator with high quality factor and small size at 5.8GHz is presented. The design of the resonator is based on a micromachined cavity filled with a high dielectric constant material. Energy is coupled into the cavity from input and output microstrip lines via slots. It is shown experimentally that the limiting factor in achieving a higher Q with the given dielectric materials is the dielectric loss. This resonator provides a low cost, minimum size and compact solution for the fabrication of planar, narrow-band filters and diplexers in modern wireless communication systems.

Published in:

Microwave Conference, 2000. 30th European

Date of Conference:

Oct. 2000