By Topic

Automated analysis of radar imagery of Venus: handling lack of ground truth

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
M. C. Burl ; Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA, USA ; U. M. Fayyad ; P. Perona ; P. Smyth

Lack of verifiable ground truth is a common problem in remote sensing image analysis. For example, consider the synthetic aperture radar (SAR) image data of Venus obtained by the Magellan spacecraft. Planetary scientists are interested in automatically cataloging the locations of all the small volcanoes in this data set; however, the problem is very difficult and cannot be performed with perfect reliability even by human experts. Thus, training and evaluating the performance of an automatic algorithm on this data set must be handled carefully. We discuss the use of weighted free-response receiver-operating characteristics (wFROCs) for evaluating detection performance when the “ground truth” is subjective. In particular, we evaluate the relative detection performance of humans and automatic algorithms. Our experimental results indicate that proper assessment of the uncertainty in “ground truth” is essential in applications of this nature

Published in:

Image Processing, 1994. Proceedings. ICIP-94., IEEE International Conference  (Volume:3 )

Date of Conference:

13-16 Nov 1994