By Topic

Multichannel texture analysis using localized spatial filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bovik, A.C. ; Dept. of Electr. & Comput. Eng., Texas Univ., Austin, TX, USA ; Clark, M. ; Geisler, W.S.

A computational approach for analyzing visible textures is described. Textures are modeled as irradiance patterns containing a limited range of spatial frequencies, where mutually distinct textures differ significantly in their dominant characterizing frequencies. By encoding images into multiple narrow spatial frequency and orientation channels, the slowly varying channel envelopes (amplitude and phase) are used to segregate textural regions of different spatial frequency, orientation, or phase characteristics. Thus, an interpretation of image texture as a region code, or carrier of region information, is emphasized. The channel filters used, known as the two-dimensional Gabor functions, are useful for these purposes in several senses: they have tunable orientation and radial frequency bandwidths and tunable center frequencies, and they optimally achieve joint resolution in space and in spatial frequency. By comparing the channel amplitude responses, one can detect boundaries between textures. Locating large variations in the channel phase responses allows discontinuities in the texture phase to be detected. Examples are given of both types of texture processing using a variety of real and synthetic textures

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:12 ,  Issue: 1 )