By Topic

Practical Algorithms and Lower Bounds for Similarity Search in Massive Graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fogaras, D. ; Google Inc., Mountain View, CA ; Racz, B.

To exploit the similarity information hidden in the hyperlink structure of the Web, this paper introduces algorithms scalable to graphs with billions of vertices on a distributed architecture. The similarity of multistep neighborhoods of vertices are numerically evaluated by similarity functions including SimRank, a recursive refinement of cocitation, and PSimRank, a novel variant with better theoretical characteristics. Our methods are presented in a general framework of Monte Carlo similarity search algorithms that precompute an index database of random fingerprints, and at query time, similarities are estimated from the fingerprints. We justify our approximation method by asymptotic worst-case lower bounds: we show that there is a significant gap between exact and approximate approaches, and suggest that the exact computation, in general, is infeasible for large-scale inputs. We were the first to evaluate SimRank on real Web data. On the Stanford WebBase graph of 80M pages the quality of the methods increased significantly in each refinement step until step four

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:19 ,  Issue: 5 )