By Topic

Reducing the Peak-to-Average Power Ratio of OFDM Signals Through Precoding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Slimane, S.B. ; Dept. of Commun. Syst., R. Inst. of Technol., Stockholm

Orthogonal-frequency-division-multiplexing (OFDM) techniques allow the transmission of high data rates over broadband radio channels subject to multipath fading without the need for powerful channel equalization. However, they are very sensitive to nonlinear effects due to the high peak-to-average power ratio (PAPR) owned by their transmitted signals. This paper proposes an efficient technique for reducing the PAPR of OFDM signals. The proposed technique is data-independent and, thus, does not require new processing and optimization for each transmitted OFDM block. The reduction in PAPR of the OFDM signal is obtained through a proper selection of a precoding scheme that distributes the power of each modulated symbol over the OFDM block. The obtained results show that this precoding scheme is an attractive solution to the PAPR problem of OFDM signals. It is shown, through computer simulations, that the PAPR of precoded OFDM signals approaches that of single-carrier signals. The good improvement in PAPR given by the present technique permits the reduction of the complexity and cost of the transmitter significantly. The precoding schemes also take advantage of the frequency variations of the communication channel and can provide considerable performance gain in fading-multipath channels

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:56 ,  Issue: 2 )