Cart (Loading....) | Create Account
Close category search window

Blind Channel Estimation for MIMO-OFDM Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Changyong Shin ; Commun. & Network Lab., Samsung Adv. Inst. of Technol. ; Heath, R.W. ; Powers, E.J.

By combining multiple-input multiple-output (MIMO) communication with the orthogonal frequency division multiplexing (OFDM) modulation scheme, MIMO-OFDM systems can achieve high data rates over broadband wireless channels. In this paper, to provide a bandwidth-efficient solution for MIMO-OFDM channel estimation, we establish conditions for channel identifiability and present a blind channel estimation technique based on a subspace approach. The proposed method unifies and generalizes the existing subspace-based methods for blind channel estimation in single-input single-output OFDM systems to blind channel estimation for two different MIMO-OFDM systems distinguished according to the number of transmit and receive antennas. In particular, the proposed method obtains accurate channel estimation and fast convergence with insensitivity to overestimates of the true channel order. If virtual carriers (VCs) are available, the proposed method can work with no or insufficient cyclic prefix (CP), thereby potentially increasing channel utilization. Furthermore, it is shown under specific system conditions that the proposed method can be applied to MIMO-OFDM systems without CPs, regardless of the presence of VCs, and obtains an accurate channel estimate with a small number of OFDM symbols. Thus, this method improves the transmission bandwidth efficiency. Simulation results illustrate the mean-square error performance of the proposed method via numerical experiments

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:56 ,  Issue: 2 )

Date of Publication:

March 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.