By Topic

Freeway Traffic Control Using Iterative Learning Control-Based Ramp Metering and Speed Signaling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhongsheng Hou ; Adv. Control Syst. Lab., Beijing Jiaotong Univ. ; Jian-Xin Xu ; Hongwei Zhong

In this paper, an iterative learning approach for the freeway density control under ramp metering and speed regulation is developed in a macroscopic level traffic environment. Rigorous analyses show that the proposed learning control schemes guarantee the asymptotic convergence of the traffic density to the desired one. The two major features of the learning-based density control are: 1) less prior modeling knowledge required in the control system design and 2) the ability to reject exogenous traffic perturbations. The control schemes are applied to a freeway model, and simulation results confirm the efficacy of the proposed approach

Published in:

IEEE Transactions on Vehicular Technology  (Volume:56 ,  Issue: 2 )