By Topic

Diversity and Multiplexing Tradeoff in General Fading Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lei Zhao ; Dept. of Electr. & Comput. Eng., Iowa State Univ., Ames, IA ; Wei Mo ; Yao Ma ; Zhengdao Wang

The optimal tradeoff between diversity gain and multiplexing gain for multiple-inputmultiple-output (MIMO) channels has been studied recently under the independent and identically distributed (i.i.d.) Rayleigh-fading assumption. In this correspondence, this result is extended and the optimal tradeoff performance is derived for generalized fading channel conditions, including different fading types, nonidentical fading distributions, spatial correlation, and nonzero channel means. Our results include many known models as special cases and shed light on the effects of different channel parameters on the optimal tradeoff performance

Published in:

Information Theory, IEEE Transactions on  (Volume:53 ,  Issue: 4 )