By Topic

Universal Filtering Via Prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

We consider the filtering problem, where a finite-alphabet individual sequence is corrupted by a discrete memoryless channel, and the goal is to causally estimate each sequence component based on the past and present noisy observations. We establish a correspondence between the filtering problem and the problem of prediction of individual sequences which leads to the following result: Given an arbitrary finite set of filters, there exists a filter which performs, with high probability, essentially as well as the best in the set, regardless of the underlying noiseless individual sequence. We use this relationship between the problems to derive a filter guaranteed of attaining the "finite-state filterability" of any individual sequence by leveraging results from the prediction problem

Published in:

IEEE Transactions on Information Theory  (Volume:53 ,  Issue: 4 )