By Topic

Results on the Improved Decoding Algorithm for Low-Density Parity-Check Codes Over the Binary Erasure Channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vellambi, B.N. ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA ; Fekri, F.

In this correspondence, we first investigate some analytical aspects of the recently proposed improved decoding algorithm for low-density parity-check (LDPC) codes over the binary erasure channel (BEC). We derive a necessary and sufficient condition for the improved decoding algorithm to successfully complete decoding when the decoder is initialized to guess a predetermined number of guesses after the standard message-passing terminates at a stopping set. Furthermore, we present improved bounds on the number of bits to be guessed for successful completion of the decoding process when a stopping set is encountered. Under suitable conditions, we derive a lower bound on the number of iterations to be performed for complete decoding of the stopping set. We then present a superior, novel improved decoding algorithm for LDPC codes over the binary erasure channel (BEC). The proposed algorithm combines the observation that a considerable fraction of unsatisfied check nodes in the neighborhood of a stopping set are of degree two, and the concept of guessing bits to perform simple and intuitive graph-theoretic manipulations on the Tanner graph. The proposed decoding algorithm has a complexity similar to previous improved decoding algorithms. Finally, we present simulation results of short-length codes over BEC that demonstrate the superiority of our algorithm over previous improved decoding algorithms for a wide range of bit error rates

Published in:

Information Theory, IEEE Transactions on  (Volume:53 ,  Issue: 4 )