By Topic

Tightened Upper Bounds on the ML Decoding Error Probability of Binary Linear Block Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Twitto, M. ; Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa ; Sason, I. ; Shamai, S.

The performance of maximum-likelihood (ML) decoded binary linear block codes is addressed via the derivation of tightened upper bounds on their decoding error probability. The upper bounds on the block and bit error probabilities are valid for any memoryless, binary-input and output-symmetric communication channel, and their effectiveness is exemplified for various ensembles of turbo-like codes over the additive white Gaussian noise (AWGN) channel. An expurgation of the distance spectrum of binary linear block codes further tightens the resulting upper bounds

Published in:

Information Theory, IEEE Transactions on  (Volume:53 ,  Issue: 4 )