By Topic

Tree-Based Construction of LDPC Codes Having Good Pseudocodeword Weights

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Christine A. Kelley ; Dept. of Math., Notre Dame Univ., IN ; Deepak Sridhara ; Joachim Rosenthal

We present a tree-based construction of low-density parity-check (LDPC) codes that have minimum pseudocodeword weight equal to or almost equal to the minimum distance, and perform well with iterative decoding. The construction involves enumerating a d-regular tree for a fixed number of layers and employing a connection algorithm based on permutations or mutually orthogonal Latin squares to close the tree. Methods are presented for degrees d=ps and d=ps+1, for p a prime. One class corresponds to the well-known finite-geometry and finite generalized quadrangle LDPC codes; the other codes presented are new. We also present some bounds on pseudocodeword weight for p-ary LDPC codes. Treating these codes as p-ary LDPC codes rather than binary LDPC codes improves their rates, minimum distances, and pseudocodeword weights, thereby giving a new importance to the finite-geometry LDPC codes where p>2

Published in:

IEEE Transactions on Information Theory  (Volume:53 ,  Issue: 4 )