By Topic

Morphological Texture Features for Unsupervised and Supervised Segmentations of Natural Landscapes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Irene Epifanio ; Dept. Matematiques, Univ. Jaume I, Castello ; Pierre Soille

The goal of this paper is to segment high-resolution images of natural landscapes into different cover types. With this aim, morphological texture features (descriptors of random sets obtained by morphological transformations) are used in order to avoid the limitations of spectral features. First, a supervised segmentation (the textures to detect having been previously determined) is presented. The classes correspond to different degrees of tree densities. Second, a methodology for an unsupervised texture segmentation (no a priori information about the textures is supplied) is proposed. The number of classes is automatically determined. The proposed procedures have been tested on several images, providing promising results

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:45 ,  Issue: 4 )