By Topic

Impact of Multiresolution Active and Passive Microwave Measurements on Soil Moisture Estimation Using the Ensemble Kalman Smoother

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Susan C. Dunne ; Meteorol. & Climate Centre, Univ. Coll. Dublin ; Dara Entekhabi ; Eni G. Njoku

An observing system simulation experiment is developed to test tradeoffs in resolution and accuracy for soil moisture estimation using active and passive L-band remote sensing. Concepts for combined radar and radiometer missions include designs that will provide multiresolution measurements. In this paper, the scientific impacts of instrument performance are analyzed to determine the measurement requirements for the mission concept. The ensemble Kalman smoother (EnKS) is used to merge these multiresolution observations with modeled soil moisture from a land surface model to estimate surface and subsurface soil moisture at 6-km resolution. The model used for assimilation is different from that used to generate "truth." Consequently, this experiment simulates how data assimilation performs in real applications when the model is not a perfect representation of reality. The EnKS is an extension of the ensemble Kalman filter (EnKF) in which observations are used to update states at previous times. Previous work demonstrated that it provides a computationally inexpensive means to improve the results from the EnKF, and that the limited memory in soil moisture can be exploited by employing it as a fixed lag smoother. Here, it is shown that the EnKS can be used in large problems with spatially distributed state vectors and spatially distributed multiresolution observations. The EnKS-based data assimilation framework is used to study the synergy between passive and active observations that have different resolutions and measurement error distributions. The extent to which the design parameters of the EnKS vary depending on the combination of observations assimilated is investigated

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:45 ,  Issue: 4 )