By Topic

Automatic generation of image-segmentation processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. Reinhardt ; Dept. of Electr. Eng., Pennsylvania State Univ., University Park, PA, USA ; W. E. Higgins

Solutions to real-world image-segmentation problems typically require many image-processing steps. Unfortunately, the user must decide how to construct this sequence of steps for a given problem. So far, no system has been proposed to make the construction of these processes “easy” for the user. As a result, segmentation processes are often laboriously developed by an image-processing expert. We describe a method for automatically generating image-segmentation processes for arbitrary images. Our method uses cue-based image analysis. The user provides problem-specific information via easily defined cues. Two types of cues can be defined: (1) iconic cues, which are image-based and constructed by drawing directly onto the image data; and (2) symbolic cues, which are verbally specified facts. The cues are interpreted to help select image-processing functions. The user need not be an image-processing expert-he must only understand the significance of the specified cues for a particular problem

Published in:

Image Processing, 1994. Proceedings. ICIP-94., IEEE International Conference  (Volume:3 )

Date of Conference:

13-16 Nov 1994