Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

An Efficient Multiobjective Optimizer Based on Genetic Algorithm and Approximation Techniques for Electromagnetic Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ho, S.L. ; Hong Kong Polytech. Univ. ; Yang, S.Y. ; Ni, G.Z. ; Wong, K.F.

To provide an efficient multiobjective optimizer, an approximation technique based on the moving least squares approximation is integrated into an improved genetic algorithm. In order to use fully, both the a posteriori information gathered from the latest searched nondominated solutions and the a priori knowledge about the search space and individuals, in guiding the search towards more and better Pareto solutions, a gradient direction based perturbation search strategy and a preference function based fitness penalization scheme are proposed. Numerical results are reported to validate the proposed work

Published in:

Magnetics, IEEE Transactions on  (Volume:43 ,  Issue: 4 )