By Topic

Hardware Acceleration for Finite-Element Electromagnetics: Efficient Sparse Matrix Floating-Point Computations With FPGAs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
El-Kurdi, Y. ; McGill Univ., Montreal, Que. ; Giannacopoulos, D. ; Gross, W.J.

Custom hardware acceleration of electromagnetics computation leverages favorable industry trends, which indicate reconfigurable hardware devices such as field-programmable gate arrays (FPGAs) may soon outperform general-purpose CPUs. We present a new striping method for efficient sparse matrix-vector multiplication implemented in a deeply pipelined FPGA design. The effectiveness of the new method is illustrated for a representative set of finite-element matrices computed on our highly scalable and fully pipelined FPGA-based implementation

Published in:

Magnetics, IEEE Transactions on  (Volume:43 ,  Issue: 4 )