By Topic

Broadband SBS Slow Light in an Optical Fiber

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zhaoming Zhu ; Dept. of Phys., Duke Univ., Durham, NH ; Andrew M. C. Dawes ; Daniel J. Gauthier ; Lin Zhang
more authors

In this paper, we investigate slow light via stimulated Brillouin scattering (SBS) in a room temperature optical fiber that is pumped by a spectrally broadened laser. Broadening the spectrum of the pump field increases the linewidth Deltaomegap of the Stokes amplifying resonance, thereby increasing the slow-light bandwidth. One physical bandwidth limitation occurs when the linewidth becomes several times larger than the Brillouin frequency shift OmegaB so that the anti-Stokes absorbing resonance substantially cancels out the Stokes amplifying resonance and, hence, the slow-light effect. We find that partial overlap of the Stokes and anti-Stokes resonances can actually lead to an enhancement of the slow-light delay-bandwidth product when Deltaomegapsime1.3OmegaB. Using this general approach, we increase the Brillouin slow-light bandwidth to over 12 GHz from its nominal linewidth of ~30 MHz obtained for monochromatic pumping. We controllably delay 75-ps-long pulses by up to 47 ps and study the data-pattern dependence of the broadband SBS slow-light system

Published in:

Journal of Lightwave Technology  (Volume:25 ,  Issue: 1 )