Cart (Loading....) | Create Account
Close category search window
 

Dynamic Wavelength and Bandwidth Allocation in Hybrid TDM/WDM EPON Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dhaini, A.R. ; Concordia Inst. for Inf. Syst. Eng., Concordia Univ., Montreal, Que. ; Assi, C.M. ; Maier, M. ; Shami, A.

We discuss a wavelength-division-multiplexed-based passive-optical-network (PON) architecture that allows for incremental upgrade from single-channel time-division multiple-access PONs in order to provide higher bandwidth in the access network. Various dynamic-wavelength and bandwidth-allocation algorithms (DWBAs) for wave-division multiplexed PON are presented; they exploit both interchannel and intrachannel statistical multiplexing in order to achieve better performance, especially when the load on various channels is not symmetric. Three variants of the DWBA are presented, and their performance is compared. While the first variant incurs larger idle times (and, hence, poor performance), the other two algorithms achieve better but different performance with critical dissimilarities. Our analysis also focuses on the fair assignment of excessive bandwidth in the upstream direction to highly loaded optical network units. We compare the performance of DWBA to another algorithm that relies on static-channel allocation. Furthermore, a study is presented wherein the number of wavelengths increases, and a comparison with interleaved polling with adaptive cycle time is shown. We use extensive simulations throughout this paper

Published in:

Lightwave Technology, Journal of  (Volume:25 ,  Issue: 1 )

Date of Publication:

Jan. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.