By Topic

A Metric for Paraphrase Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cordeiro, J. ; Centre of Human Language, Univ. of Beira Interior, Covilha ; Dias, G. ; Brazdil, P.

Monolingual text-to-text generation is an emerging research area in natural language processing. One reason for the interest in such generation systems is the possibility to automatically learn text-to-text generation strategies from aligned monolingual corpora. In this context, paraphrase detection can be seen as the task of aligning sentences that convey the same information but yet are written in different forms, thereby building a training set of rewriting examples. In this paper, we propose a new metric for unsupervised detection of paraphrases and test it over a set of standard paraphrase corpora. The results are promising as they outperform state-of-the-art measures developed for similar tasks.

Published in:

Computing in the Global Information Technology, 2007. ICCGI 2007. International Multi-Conference on

Date of Conference:

4-9 March 2007