By Topic

Evolutionary Computing on Consumer Graphics Hardware

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ka-Ling Fok ; Chinese University of Hong Kong ; Tien-Tsin Wong ; Man-Leung Wong

We propose implementing a parallel EA on consumer graphics cards, which we can find in many PCs. This lets more people use our parallel algorithm to solve large-scale, real-world problems such as data mining. Parallel evolutionary algorithms run on consumer-grade graphics hardware achieve better execution times than ordinary evolutionary algorithms and offer greater accessibility than those run on high-performance computers

Published in:

IEEE Intelligent Systems  (Volume:22 ,  Issue: 2 )