By Topic

A Heuristic Approach to Learning Rules from Fuzzy Databases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jose Ranilla ; University of Oviedo ; Luis J. Rodriguez-Muniz

As an alternative to approaches based on entropy and information gain, we describe a system that uses a measure called the impurity level. The learning algorithm based on this measure, which we call FARNI, first induces fuzzy decision trees by using an impurity-level extension for selecting the best branch. This is similar to the way C4.5 and ARNI induce selections for crisp databases. Once FARNI calculates the fuzzy decision tree, it returns compact fuzzy rule sets that apply a pruning process

Published in:

IEEE Intelligent Systems  (Volume:22 ,  Issue: 2 )