By Topic

Supervised textured image segmentation using feature smoothing and probabilistic relaxation techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hsiao, J.Y. ; Hughes Aircraft Co., Los Angeles, CA, USA ; Sawchuk, A.A.

A description is given of a supervised textured image segmentation algorithm that provides improved segmentation results. An improved method for extracting textured energy features in the feature extraction stage is described. It is based on an adaptive noise smoothing concept that takes the nonstationary nature of the problem into account. Texture energy features are first estimated using a window of small size to reduce the possibility of mixing statistics along region borders. The estimated texture energy feature values are smoothed by a quadrant filtering method to reduce the variability of the estimates while retaining the region border accuracy. The estimated feature values of each pixel are used by a Bayes classifier to make an initial probabilistic labeling. The spatial constraints are enforced through the use of a probabilistic relaxation algorithm. Two probabilistic relaxation algorithms are investigated. Limiting the probability labels by probability threshold is proposed. The tradeoff between efficiency and degradation of performed is studied

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:11 ,  Issue: 12 )