By Topic

The geometry of differential operators with application to image processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Krueger, W.M. ; Dept. of Comput. Sci. & Inf. Syst., DePaul Univ., Chicago, IL, USA ; Phillips, Keith

A family of second-order nonlinear differential operators that are useful in building simple edge detectors is treated. The authors provide a uniform definition for these operators and describe their internal geometry. Based on their geometric analysis, they associate symbolic descriptors with the abstract edges defined by the operators. One of them, Q, is essentially the same operator that J.F. Canny (ibid., vol.PAMI-8, p.552-7, 1986) used to define his two-dimensional simple edge detector. The authors give a parse tree for Q, which provides a complete analysis of its local geometry. The analysis shows that Q has a fondness for edges that lift to certain types of asymptotic curves. These include select straight line segments lying on the surface, inflections of mean curvature, and paths with constant rate of ascent. The methods are drawn largely from vector calculus and differential geometry. The authors illustrate their theoretical work with results obtained when Q was applied to image data that were interpolated with a B-spline

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:11 ,  Issue: 12 )