Cart (Loading....) | Create Account
Close category search window
 

Equivalence of Some Common Linear Feature Extraction Techniques for Appearance-Based Object Recognition Tasks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Vicente, M.A. ; Dept. of Ind. Syst. Eng., Miguel Hernandez Univ., Alicante ; Hoyer, P.O. ; Hyvarinen, A.

Recently, a number of empirical studies have compared the performance of PCA and ICA as feature extraction methods in appearance-based object recognition systems, with mixed and seemingly contradictory results. In this paper, we briefly describe the connection between the two methods and argue that whitened PCA may yield identical results to ICA in some cases. Furthermore, we describe the specific situations in which ICA might significantly improve on PCA

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:29 ,  Issue: 5 )

Date of Publication:

May 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.